INTRODUCTION OF NITROGEN

Nitrogen was discovered by Daneil Rutherford. It is the most common gas present in the atmosphere and the tenth most abundant element in the Earth's crust.

Like carbon, nitrogen is also the major building block of living things. Nitrogen is present in protein, vitamins, animal's diet and plants.

Nitrogen is the first member of VA group in the periodic table as it contains 5 electrons in the valence shell. Its atomic number is 7 and atomic mass is 14 amu. $(^{7}N_{14})$

OCCURRENCE:

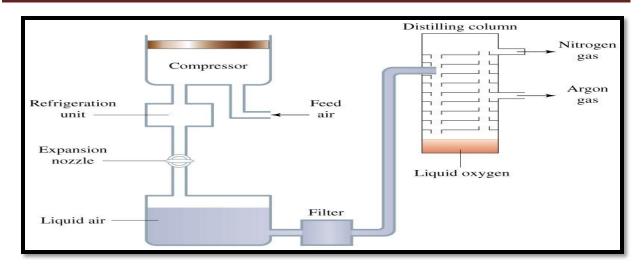
Nitrogen occurs in nature both in the free state as well as in the combined state. In free state it is present as N_2 gas in air up to 78% by volume. In the combined state nitrogen occurs abundantly in earth's crust as nitrates of Na, Ca and P as well as ammonium salts such as NaNO₃, Ca(NO₃)₂, (NH₄)₂SO₄ etc. In combined state it is also found in proteins, vitamins, urea and other organic compounds.

INTRODUCTION OF OXYGEN

Oxygen was discovered by Scheele in 1772 and Priestly in 1774. Lavoisier gave the name oxygen which means acid producer. Lavoisier also describes the major properties of oxygen. Oxygen is the most essential element for all living things and it is necessary for all the combustion reactions. All acids contain oxygen as major constituent. Oxygen is the first member of VIA group in the periodic table as it contains 6 electrons in its valence shell. Its atomic number is 8 and atomic mass is 16 amu ($^{8}O_{16}$). It exist as diatomic has (O_{2}).

OCCURRENCE:

Oxygen occurs in nature both in the Free State as well as in the combined state. In Free State it is present as O_2 gas in air upto 21% by volume. In the combined state, oxygen constitutes the 50% by mass the Earth's crust, the oceans and the air. It is present about 88.8% by mass in water. It is present in silica (SiO₂), silicates, carbonates and oxides of both metals and non metals which make up clays, rocks and sand. Human body is made up of about two third by mass of oxygen in combined state.

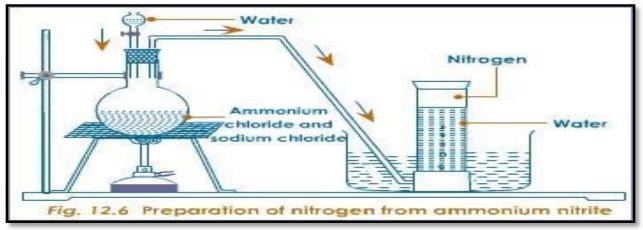

PREPARATION OF NITROGEN AND OXYGEN GASES

1. FROM AIR:

Air is the mixture of N_2 gas 78%, O_2 gas 21% Argon (Ar) gas 1% and CO_2 gas 0.03% The process of isolation of N_2 and O_2 gases involves following two steps.

i. By Liquefaction Of Air:

First air is passed through the solution of caustic soda (NaOH) to remove the CO₂ gas. CO₂ + 2NaOH \longrightarrow Na₂CO₃ + H₂O Then air is cooled into liquid air at -200°C by the process of refrigeration. This process is taken place by successive compression and expansion of air.


ii. <u>Fraction Distillation Of Liquid Air:</u>

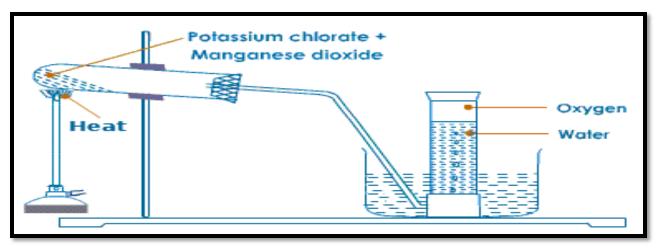
Liquid air is introduced into fractionating column. By the process of frictional distillation first N_2 gas is obtained at -196° C, Argon (Ar) gas is obtained at -185.7° C and O_2 gas is obtained at -183° C.

2. LABORATORY PREPARATION OF NITROGEN:

By Heating NaNO₂ And NH₄Cl:

When mixture of Sodium Nitrite (NaNO₂) and aqueous solution of Ammonium Chloride (NH₄Cl) is heated then N₂ gas is produces in two steps.

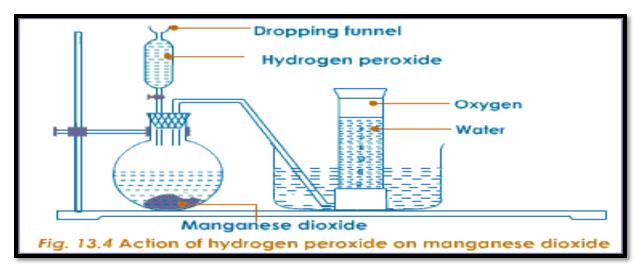
- i. In first step NH_4NO_2 is formed which is unstable. NaNO₂ + NH₄Cl \xrightarrow{heat} NaCl + NH₄NO₂
- ii. In second step NH_4NO_2 is decomposed into N_2 gas and H_2O . $NH_4NO_2 \xrightarrow{heat} N_2 + 2H_2O$


3. LABORATORY PREPARATION OF OXYGEN:

In laboratory oxygen is prepared by the decomposition of Potassium Chlorate (KClO₃) and Hydrogen Peroxide (H_2O_2).

1. By Potassium Chlorate (KClO₃)

When a mixture of Potassium Chlorate (KClO₃) and Manganese dioxide (MnO₂) in the ratio of 4:1 by mass is heated in hard test tube then O₂ gas is produces by the decomposition of KClO₃. In this reaction MnO_2 acts as a catalyst.


 $2\text{KClO}_3 \qquad \qquad \text{MnO}_2 \qquad 2\text{KCl} \qquad + \qquad 3\text{O}_2$

2. By Hydrogen Peroxide (H₂O₂)

When mixture of Hydrogen Peroxide (H_2O_2) and Manganese Dioxide (MnO_2) is heated then O_2 gas is produced by decomposition of H_2O_2 . MnO₂ acts as catalyst.

 $2H_2O_2$ M_{nO_2} $2H_2O$ + O_2

PHYSICAL PROPERTIES OF NITROGEN GAS:

- 1. Nitrogen is colorless, odorless and tasteless gas.
- 2. It is slightly soluble in water and slightly lighter than air.
- 3. Its boiling point is -196° C while melting point is -210° C.

CHEMICAL PROPERTIES OF NITROGEN GAS:

Molecular nitrogen (N₂) is un-reactive because in one molecule of nitrogen gas, two N-atoms are bonded through strong trople covalent bond (N=N) and bond dissociation energy is very high. However at very high temperature and pressure, nitrogen combines directly with H₂, O₂ and metals like Mg and Ca.

a) Reaction of N_2 With H_2

When mixture of pure N_2 and H_2 gases in the ratio of 1:3 by volume is compressed to 200atmospheric pressure and passed over catalyst such as Fe₂O₃, Al₂O₃ at 400-450°C then Ammonia (NH₃) gas is produced.

 N_2 + $3H_2$ \leftarrow $2NH_3$ + Heat

This reaction is reversible and exothermic. It is also called Haber-Bosch Process.

b) Reaction of N_2 With O_2

Nitrogen combines with oxygen at about 2000°C to form nitric oxide (NO)

 N_2 + O_2 $\xrightarrow{2000^{\circ}C}$ \rightarrow 2NO

c) Reaction of N₂ With Metals:

Nitrogen reacts with metals like Mg and Ca to form their respective nitrides at high temperature

- i. N_2 + 3Mg \longrightarrow Mg_3N_2
- ii. N_2 + 3Ca \longrightarrow Ca_3N_2

USES OF NITROGEN:

- 1. Nitrogen is widely used in the fertilizer industries for manufacture of Ammonia (NH₃), Ammonium Sulphate (NH₄)₂SO₄, Nitric acid (HNO₃), Ammonium Nitrate (NH₄NO₃) and Urea (H₂N—CO — NH₂).
- 2. Due to low reactivity of nitrogen, it is used to provide an inert atmosphere in light bulbs and other electric appliances.
- 3. It is also used in manufacture of glass, in welding and for storage fruits.

PHYSICAL PROPERTIES OF OXYGEN GAS:

- 1. Oxygen is colorless, odorless and tasteless gas.
- 2. It is slightly soluble in water and slightly denser than air. The solubility of O2 in water is very important for fishes and other aquatic animals.
- 3. It liquefies at -183° C solidifies at -225° C.
- 4. It is neutral to moist litmus paper.

CHEMICAL PROPERTIES OF OXYGEN GAS:

Oxygen is less reactive at room temperature; however at high temperature it becomes highly reactive. Almost all elements directly combine with oxygen to form oxides.

a)	Reaction of O ₂ With Non Metals:								
	Non metals such as C, N, S etc reacts with O2 to form their respective oxides. For Example:								
	i.	С	+	O_2			CO_2		
	ii.	N_2	+	O_2			2NO		
	iii.	H ₂ gas bu	ırns wit	h O ₂ vio	elently to form	water.			
		$2H_2$	+	O_2			$2H_2C$)	
b)	React	tion of O ₂ V	With H	ydroca	rbons:				
	Metha	ane (CH ₄) b	ourns co	mpletel	y in O ₂ to prod	duce CO ₂ gas,	water va	pors and heat e	energy. It
	is exo	thermic rea	ction.						
	CI	H_4 +	2O ₂			► CO ₂	+	$2H_{2}O$ +	Heat
			$2O_2$	ion reac		\blacktriangleright CO ₂	+	$2H_{2}O$ +	Heat
	It is al	H_4 +	2O ₂ ombust			\blacktriangleright CO ₂	+	$2H_{2}O$ +	Heat
c)	It is al React	H ₄ + lso called co ion of O₂ V	2O ₂ ombust With N	Ietals:	tion	-		2H ₂ O +	Heat
c)	It is al React	H ₄ + lso called co ion of O₂ V gen reacts v	2O ₂ ombust With N	Ietals:	tion	-		-	Heat
c)	It is al React Nitrog	H ₄ + lso called co ion of O₂ V gen reacts v	2O ₂ ombust With N	Ietals:	tion	-	pective r	-	Heat
c)	It is al React Nitrog tempe	H ₄ + lso called co ion of O₂ V gen reacts v rature	2O ₂ ombust With M with me	Ietals:	tion	form their res	pective r (Mag	itrides at high	Heat

USES OF OXYGEN:

 $O_2 +$

iv.

1. Oxygen is essential for all the living things i.e, animals and plants. Life cannot exist without oxygen.

 Na_2O_2

- 2. Oxygen cylinders are used where the supply of air is either low or insufficient for normal life.
- 3. It is used to produce hotter flame. Acetylene (C_2H_2) burns with oxygen gas to produce hotter flame of temperature about 3000°C, which is used for welding and cutting metals.
- 4. Rockets carry liquid oxygen for burning fuel in space.

2Na

DEFINTION OF FRACTIONAL DISTILLATION:

"It is the process of separation of different liquids from their mixture by heating at their boiling points. Particular liquid is changed into vapors and then condense again into liquid."

(Sodium peroxide)

OXIDES

The binary compounds of oxygen are called oxides. Almost all the elements except noble gases combine with oxygen to form oxides. On the basis of valence number of oxygen, oxides are classified into four main groups as given below.

- Normal oxides
 - Basic oxides
 - Acidic oxides
 - Neutral oxides
 - Amphoteric oxides
- Peroxides
- Super oxides
- Sub oxides

1. NORMAL OXIDES:

The oxides in which valence number of oxygen is "-2" are called normal oxides. Normal oxides are further classified into four types:

i. Basic Oxides

The oxides of metals like Na, K, Ca have basic properties thus they are called basic oxides. For Example: Na₂O, K₂O, CaO etc.

ii. Acidic Oxides

The oxides of non-metals like C, S, P have acidic properties thus they are called acidic oxides. For Example: SO_2 , CO_2 etc.

iii. Neutral Oxides

The oxides of some non-metals are neutral thus they are called neutral oxides. For Example: NO (Nitric Oxide), H_2O etc.

iv. Amphoteric Oxides

The oxides which have acidic as well as basic properties are called amphoteric oxides. The oxides of certain metals are amphoteric oxides.

For Example: ZnO, Al_2O_3 etc.

2. <u>PEROXIDES:</u>

The oxides in which valence number of oxygen is "-1" are called peroxides. For Example:

$_{2}O_{2})$

ii. Hydrogen Peroxide (H_2O_2)

3. <u>SUPEROXIDES:</u>

The oxides in which valence number of oxygen is "-1/2" are called superoxides.

For Example:Potassium Superoxide (KO₂)

4. <u>SUBOXIDES:</u>

The oxides in which valence number of oxygen is less than "-1/2" are called suboxides. Very few suboxides are known

For Example: Carbon Suboxide (C₃O₂)

		OXIDATION AND REDU	CTUION								
1.	OXIDATION REACTION:										
	Oxidat	dation is a chemical process which involves,									
	i.	Addition of oxygen ii.	Removal of Hydrogen								
	iii.	Loss of electron from atom or ion.									
	i.	Addition Of Oxygen									
		If oxygen is added to any other substance then oxidation reaction take place and									
		oxides are formed.									
		$4\text{Fe} + 3\text{O}_2 \longrightarrow$	$2Fe_2O_3$								
		$2NO + O_2 \longrightarrow$	$2NO_2$								
	ii.	<u>Removal Of Hydrogen</u>									
		If hydrogen is removed from any other subst	ance then oxidation reaction take								
		place.									
	💎	$H_2S + Cl_2 \longrightarrow$	S^0 + 2HCl								
	iii.	Loss Of Electrons From Atom Or Ion.									
		Removal or loss of electron from any atom c									
	*	For Example: Fe is oxidized to Fe^{+2} and Fe^{+3}									
		Fe	$Fe^{+2} + 2e -$								
	۲		$Fe^{+3} + 3e -$								
		That substance which oxidizes other substan									
_		For Example: O ₂ , H ₂ SO ₄ , HNO ₃ , KMNO ₄ et	c are oxidizing agents.								
2.		CTION REACTION									
	i.	tion is a chemical process which involves,									
	1.	Domoval of ovugan	Addition of Undrogon								
	:::	Removal of oxygen ii.	Addition of Hydrogen								
	iii. •	Gain of electron	Addition of Hydrogen								
	iii. i.	Gain of electron Removal Of Oxygen:									
	i.	Gain of electron <u>Removal Of Oxygen:</u> If oxygen is removed from any other substar	nce then reduction reaction take place.								
	i.	Gain of electron <u>Removal Of Oxygen:</u> If oxygen is removed from any other substan $CuO + H_2 \longrightarrow$									
	i.	Gain of electron <u>Removal Of Oxygen:</u> If oxygen is removed from any other substar CuO + H ₂ <u>Addition Of Hydrogen:</u>	then reduction reaction take place. $Cu^0 + H_2O$								
	i.	Gain of electron Removal Of Oxygen: If oxygen is removed from any other substant CuO + H ₂ Addition Of Hydrogen: If hydrogen is added to any other substance	then reduction reaction take place. $Cu^0 + H_2O$ then reduction reaction take place.								
	i.	Gain of electron <u>Removal Of Oxygen:</u> If oxygen is removed from any other substant CuO + H ₂ <u>Addition Of Hydrogen:</u> If hydrogen is added to any other substance H ₂ + S ⁰	then reduction reaction take place. $Cu^0 + H_2O$ then reduction reaction take place. H_2S								
	i. ii. ◆	Gain of electron <u>Removal Of Oxygen:</u> If oxygen is removed from any other substant CuO + H ₂ <u>Addition Of Hydrogen:</u> If hydrogen is added to any other substance H ₂ + S ⁰ H ₂ S + Cl ⁰	then reduction reaction take place. $Cu^0 + H_2O$ then reduction reaction take place. H_2S								
	i.	Gain of electron <u>Removal Of Oxygen:</u> If oxygen is removed from any other substant $CuO + H_2 \longrightarrow$ <u>Addition Of Hydrogen:</u> If hydrogen is added to any other substance $H_2 + S^0 \longrightarrow$ $H_2S + Cl^0 \longrightarrow$ <u>Gain Of Electrons</u>	then reduction reaction take place. $Cu^0 + H_2O$ then reduction reaction take place. H_2S S + HCl								
	i. ii. ◆	Gain of electron <u>Removal Of Oxygen:</u> If oxygen is removed from any other substant CuO + H ₂ <u>Addition Of Hydrogen:</u> If hydrogen is added to any other substance of H ₂ + S ⁰ H ₂ S + Cl ⁰ <u>Gain Of Electrons</u> Gain of electron in any substance or ion is call	then reduction reaction take place. $Cu^0 + H_2O$ then reduction reaction take place. H_2S S + HCl alled reduction reaction.								
	i. ii. * iii.	Gain of electron <u>Removal Of Oxygen:</u> If oxygen is removed from any other substant $CuO + H_2 \longrightarrow$ <u>Addition Of Hydrogen:</u> If hydrogen is added to any other substance $H_2 + S^0 \longrightarrow$ $H_2S + Cl^0 \longrightarrow$ <u>Gain Of Electrons</u>	then reduction reaction take place. $Cu^{0} + H_{2}O$ then reduction reaction take place. $H_{2}S$ S + HCl alled reduction reaction. ³) are reduced to iron (Fe).								
	i. ii. iii. iii.	Gain of electron <u>Removal Of Oxygen:</u> If oxygen is removed from any other substant CuO + H ₂ <u>Addition Of Hydrogen:</u> If hydrogen is added to any other substance H ₂ + S ⁰ H ₂ S + Cl ⁰ <u>Gain Of Electrons</u> Gain of electron in any substance or ion is ca For Example: Ferrous (Fe ⁺²) and Ferric (Fe ⁺	then reduction reaction take place. $Cu^{0} + H_{2}O$ then reduction reaction take place. $H_{2}S$ S + HCl alled reduction reaction. ³) are reduced to iron (Fe). Fe^{0}								
	i. ii. iii. iii.	Gain of electron <u>Removal Of Oxygen:</u> If oxygen is removed from any other substant CuO + H ₂ <u>Addition Of Hydrogen:</u> If hydrogen is added to any other substance H_2 + S ⁰ H ₂ S + Cl ⁰ <u>Gain Of Electrons</u> Gain of electron in any substance or ion is car For Example: Ferrous (Fe ⁺²) and Ferric (Fe ⁺ Fe ⁺² + 2e - Fe ⁺³ + 3e - Fe ⁺³ + 3e - Fe ⁺³ + 3e - Fe ⁺³ + 3e - Fe ⁺¹	then reduction reaction take place. $Cu^{0} + H_{2}O$ then reduction reaction take place. $H_{2}S$ S + HCl alled reduction reaction. ³) are reduced to iron (Fe). Fe^{0} Fe^{0}								
	i. ii. iii. iii.	Gain of electron <u>Removal Of Oxygen:</u> If oxygen is removed from any other substant CuO + H ₂ <u>Addition Of Hydrogen:</u> If hydrogen is added to any other substance H_2 + S ⁰ H ₂ S + Cl ⁰ <u>Gain Of Electrons</u> Gain of electron in any substance or ion is car For Example: Ferrous (Fe ⁺²) and Ferric (Fe ⁺ Fe ⁺² + 2e -	then reduction reaction take place. $Cu^{0} + H_{2}O$ then reduction reaction take place. $H_{2}S$ S + HCl alled reduction reaction. ³) are reduced to iron (Fe). Fe^{0} Fe^{0} Fe^{0} the is called " <i>reducing agent</i> ".								

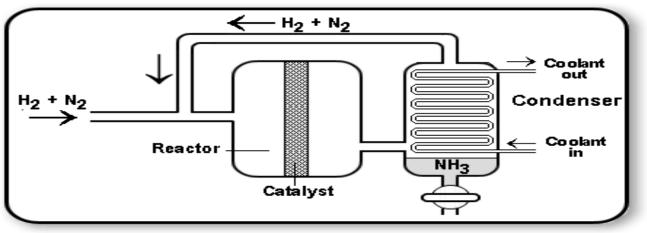
The oxidation and reduction reactions always occur simultaneously. In any complete reaction one substance is reduced and other substance is oxidized. The overall reaction is known as oxidation reduction or redox reaction.

For Example:

Zn^0			\rightarrow Zn ⁺²	+	2e-	(Oxidation Reaction)
Cu^{+2}	+	2e	→ Cu0			(Reduction Reaction)
Zn^0	+	Cu ⁺²	\rightarrow Zn ⁺²	+	Cu^0	(Redox Reaction)

AMMONIA (NH₃)

Ammonia is a very important chemical in industry. In nature ammonia is produced during the decay of nitrogenous matter in the absence of air.


LABORATORY PREPARATION OF NH3:

In laboratory NH₃ gas is produced by the reaction of ammonium chloride (NH₄Cl) with calcium hydroxide Ca(OH)₂.

 $2NH_4Cl + Ca(OH)_2 \xrightarrow{heat} CaCl_2 + 2H_2O + 2NH_3$ **INDUSTRIAL PREPARATION OF NH₃ (HABER- BOSH PROCESS):**

On large scale ammonia is manufactured by Haber- Bosh Process. In this process mixture of pure N_2 and H_2 gases in the ratio of 1:3 by volume is compressed to 200 atmospheric pressure, then this mixture is passed over catalyst such as Ferric oxide (Fe₂O₃) and Aluminum oxide (Al₂O₃) at $400 - 450^{\circ}$ C.

 N_2 + $3H_2$ \longleftrightarrow $2NH_3$ + Heat This reaction is reversible and exothermic. Ammonia gas obtained in this process can be liquefied by cooling. By the spray of water on NH_3 gas in the absorption tower, ammonia solution can be obtained.

PHYSICAL PROPERTIES OF NH3:

- 1. Ammonia is a colorless gas with a characteristic pungent smell.
- 2. In large quantity, it is poisonous because it effect on respiration system.
- 3. It is highly soluble in water; about 1300 ml dissolve in 1ml of water at 0°C.
- 4. Its solution is alkaline as it turns red litmus blue.

CHEMICAL PROPERTIES/ REACTIONS OF NH3:

1.	Reaction Of Ammonia Wit	<u>h H₂O:</u>							
	Ammonia is highly soluble in water and reacts with water to form ammonium hydroxide.								
	NH_3	+ H ₂ O		NH ₄ OH					
2.	Reaction Of Ammonia Wit	th Oxygen:							
	Ammonia does not burn	in air but it re	adily burns in oxyg	en with greenis	h yellow flame				
	to form nitrogen dioxide gas	•							
	$4NH_3$	$+ 7O_{2}$	>	$4NO_2$ +	6H ₂ O				
	However in the presence of	heated platinu	m (Pt) as catalyst, a	mmonia reacts	with excess of				
	air or oxygen to produce nit	ric oxide (NO))						
	4 NH ₃	$+ 5O_2$	(Pt)	4NO +	6H ₂ O				
	However in the presence of	heated platinu	m (Pt) as catalyst, a	mmonia react v	with excess of air				
	or oxygen to produce nitric of	oxide (NO)							
	2 NH ₃	$+ H_2SO_4$		$(NH_4)_2SO_4$					
3.	Reaction Of Ammonia Wit	th Acids:							
	Ammonia is basic in nature,	thus it reacts	with acids to form a	mmonium salts	5.				
	i. 2 NH ₃	$+ H_2SO_4$		$(NH_4)_2SO_4$					
	ii. NH ₃	+ HCl		NH ₄ Cl					
4.	Reaction Of Ammonia Wit	th CO ₂ :							
	Ammonia reacts with car	rbon dioxide g	as at high temperat	ure about 150°	C under pressure				
	to produce urea [(NH ₂) ₂ CO]								
	$2 \text{ NH}_3 + \text{CO}_2$	150°C	\rightarrow (NH ₂) ₂ CO	+ H ₂ O					

USES OF NH₃:

- 1. Aqueous ammonia is used in softening of temporary hard water and as solvent in laundries for removing grease and oil stains.
- 2. It is used as cooling agent in some refrigerators.
- 3. It is largely used in the manufacture of nitrogenous fertilizers like urea [(NH₂)₂CO], ammonium sulphate [(NH₄)₂SO₄], ammonium nitrate (NH₄NO₃) etc.
- 4. It is also used in the manufacture of nitric acid (HNO₃) and washing soda (Na₂CO₃.10H₂O).

NITRIC ACID (HNO3)

Nitric acid is a very important acid is used extensively in the laboratories and in industries. First time it was prepared by Glauber in 1685 from H_2SO_4 and KNO_3 .

LABORATORY PREPARATION OF HNO3:

In laboratory nitric acid is prepared by heating solid potassium nitrate (KNO₃) with concentrated sulphuric acid (H_2SO_4)

 $KNO_3 + H_2SO_4 \longrightarrow KHSO_4 + HNO_3$

INDUSTRIAL PREPARATION OF HNO3: (OSTWALD'S METHOD)

In industries nitric acid is prepared by the oxidation of ammonia (NH₃). This method is called Ostwald's method. The process involves the following three steps.

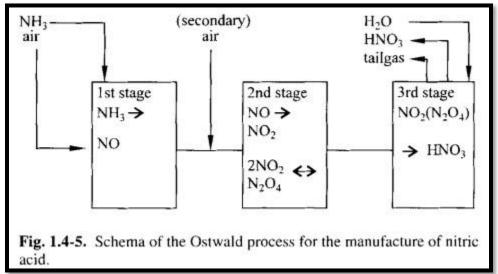
1. Oxidation Of NH₃ To NO:

In the first step NH_3 is heated with excess of air or O_2 at 600°C in the presence of Platinum (Pt) as catalyst to produce nitric oxide (NO).

 $4NH_3 + 5O_2 \xrightarrow{Pt.600^{\circ}C} 4NO + 6H_2O +$ Heat This reaction is carried out in chamber called converter. It is reversible and exothermic reaction.

2. Oxidation Of NO To NO₂:

The temperature of NO decrease to 150° C and then it is further oxidized to NO₂ in oxidation chamber.


 $2NO + O_2 \longrightarrow NO_2$

3. <u>Absorption Of NO₂ In Water:</u>

In the third step NO_2 gas is dissolved in water in absorption chamber where nitric acid is formed. The water is sprayed from the top of tower.

 $NO_2 + H_2O \longrightarrow 2HNO_3 + NO$

In this reaction NO gas is also liberated which is recycled to get more nitric acid. The nitric acid obtained in this process is 68% pure and it may be further concentrated by distillation.

PHYSICAL PROPERTIES OF HNO3:

- 1. In pure state nitric acid is colorless fuming liquid with choking small and has sour taste.
- 2. It is miscible with water in all proportion.
- 3. It boils at 83°C, freezes at -41.6°C and its density is 1.4 g/cm^3 .

CHEMICAL PROPERTIES OF HNO3:

Nitric acid is highly reactive compound. It shows three different types of properties in its reaction.

i. Acidic properties

ii. Oxidizing properties

iii. Nitrating properties

i. <u>Acidic Properties Or HNO₃ As An Acid:</u>

1.	Actual 1	operue	5 UI I	<u>1103 AS</u>	All AU	iu.					
a)) Nitric acid is strong monoprotic acid as its one molecule produces one hydrogen ion H ⁺ .										
	it is completely ionized in water to form oxonium ion (H_3O^+)										
	HNO	3	<		→		H^+	+	NO_3^{-1}		
	HNO ₃	+	H_2O	◀		H_3O^+		+	NO_3^{-1}		
b)	It neutralizes	bases to	o form s	salt and v	water. I	t is mon	obasic	acid as o	one mol	ecule o	f HNO ₃
	neutralizes or	ne mole	cule of	base.							
	HNO	3 +	NaOH	I —			NaNO	3	+	H_2O	
c)	It reacts with	metal c	arbonat	tes and b	icarbon	ates to	produce	corresp	onding	salt, C	O ₂ gas
	and H ₂ O.										
	$HNO_3 +$	CaCC) ₃	•		→	Ca(NC	$()_3)_2$	$+ CO_2$	2 +	H_2O
	HNO_3 +	NaHC	CO_3	←		NaNO	3	$+ CO_2$	2 +	H_2O	
ii.	<u>Oxidizin</u>	g Prope	erties ()	r HNO3	As An	Oxidiz	ing Ag	ent:			
	Nitric aci	d is stro	ng oxic	lizing ag	ent. It c	xidizes	many r	netals a	nd non	metals.	
a)	Reaction W	ith Me	tals:								
	◆ 3Cu + 8						$(O_3)_2$	+	2NO	+	$4H_2O$
	◆ Cu + 4	HNO ₃				Cu(NO	$(D_3)_2$	+	$2NO_2$	+	$2H_2O$
	◆ Zn + 4	HNO ₃				Zn(NC	$(D_3)_2$	+	$2NO_2$	+	$4H_2O$
b)	Reaction W	ith No									
	◆ C + 4H					CO_2	+	$4NO_2$	+	$2H_2O$	
	♦ S + 6H	INO ₃				H_2SO_4	1 +	$6NO_2$	+	$2H_2O$	
	♦ P + 5H	INO ₃			→	H ₃ PO ₄	₁ +	$5NO_2$	+	$2H_2O$	
iii.	<u>Nitrating</u>	g Prope	rties O	r HNO3	As A N	litratin	g Agen	<u>t:</u>			
	"The compou	and that	provide	es nitro g	group (-	-NO ₂) to	o other o	compou	nds is c	alled N	itrating
age	ent."										
i.	CH_4	+	H–O-	$-NO_2$				CH ₃ –N	$\rm JO_2$	+	H_2O

ii.	C_6H_6	+	H-O-NO ₂		$C_6H_5-NO_2$	+	H_2O		
1.	CH_4	+	$H-O-NO_2$		CH_3-NO_2	+	H_2O		

AQUA REGIA:

The mixture of HNO_3 and HCl in the ratio of 1:3 is called "Aqua Regia". It is also called "Royal Water". It dissolves gold and other noble metals due to liberation of chlorine gas in atomic state (Cl).

USES OF HNO3:

- 1. It is used in the manufacture of dyes, varnishes, cellulose and explosives.
- 2. Large amount of HNO₃ is used in the manufacture of fertilizer like NH₄NO₃, NaNO₃, KNO₃etc

- 3. It is used in the formation of important polymer like nylone, plastics etc.
- 4. It is as oxidizing agent, nitrating agent and in the formation of "Aqua Regia" or "Royal water".